Unpaired Optical Coherence Tomography Angiography Image Super-Resolution via Frequency-Aware Inverse-Consistency GAN.

Journal: IEEE journal of biomedical and health informatics
PMID:

Abstract

For optical coherence tomography angiography (OCTA) images, the limited scanning rate leads to a trade-off between field-of-view (FOV) and imaging resolution. Although larger FOV images may reveal more parafoveal vascular lesions, their application is hampered due to lower resolution. To increase the resolution, previous works only achieved satisfactory performance by using paired data for training, but real-world applications are limited by the challenge of collecting large-scale paired images. Thus, an unpaired approach is highly demanded. Generative Adversarial Network (GAN) has been commonly used in the unpaired setting, but it may struggle to accurately preserve fine-grained capillary details, which are critical biomarkers for OCTA. In this paper, our approach aspires to preserve these details by leveraging the frequency information, which represents details as high-frequencies (${\bm {hf}}$) and coarse-grained features as low-frequencies (${\bm {lf}}$). We propose a GAN-based unpaired super-resolution method for OCTA images and exceptionally emphasize ${\bm {hf}}$ fine capillaries through a dual-path generator. To facilitate a precise spectrum of the reconstructed image, we also propose a frequency-aware adversarial loss for the discriminator and introduce a frequency-aware focal consistency loss for end-to-end optimization. We collected a paired dataset for evaluation and showed that our method outperforms other state-of-the-art unpaired methods both quantitatively and visually.

Authors

  • Weiwen Zhang
    School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China.
  • Dawei Yang
    Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, China.
  • Haoxuan Che
    Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
  • An Ran Ran
    Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
  • Carol Y Cheung
    Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China. Electronic address: carolcheung@cuhk.edu.hk.
  • Hao Chen
    The First School of Medicine, Wenzhou Medical University, Wenzhou, China.