Enhanced hierarchical attention mechanism for mixed MIL in automatic Gleason grading and scoring.
Journal:
Scientific reports
PMID:
40341520
Abstract
Segmenting histological images and analyzing relevant regions are crucial for supporting pathologists in diagnosing various diseases. In prostate cancer diagnosis, Gleason grading and scoring relies on the recognition of different patterns in tissue samples. However, annotating large histological datasets is laborious, expensive, and often limited to slide-level or limited instance-level labels. To address this, we propose an enhanced hierarchical attention mechanism within a mixed multiple instance learning (MIL) model that effectively integrates slide-level and instance-level labels. Our hierarchical attention mechanism dynamically suppresses noisy instance-level labels while adaptively amplifying discriminative features, achieving a synergistic integration of global slide-level context and local superpixel patterns. This design significantly improves label utilization efficiency, leading to state-of-the-art performance in Gleason grading. Experimental results on the SICAPv2 and TMAs datasets demonstrate the superior performance of our model, achieving AUC scores of 0.9597 and 0.8889, respectively. Our work not only advances the state-of-the-art in Gleason grading but also highlights the potential of hierarchical attention mechanisms in mixed MIL models for medical image analysis.