This study uses artificial intelligence (AI) for differentiation between salivary gland tumours (SGT) using digitised Haematoxylin and Eosin stained whole-slide images (WSI). Machine learning (ML) classifiers were developed and tested using 320 scann...
Differentiating pseudoprogression (PsP) from true progression (TP) in high-grade glioma (HGG) patients is still challenging and critical for effective treatment management. This meta-analysis evaluates the diagnostic accuracy of artificial intelligen...
Cancer imaging : the official publication of the International Cancer Imaging Society
Aug 4, 2025
PURPOSE: Accurate preoperative grading of gliomas is critical for therapeutic planning and prognostic evaluation. We developed a noninvasive machine learning model leveraging whole-brain resting-state functional magnetic resonance imaging (rs-fMRI) b...
Cervical cancer ranks fourth globally in terms of both incidence and mortality among women, making timely diagnosis essential for effective treatment. Although the acetowhite regions and their margins are important for cervical cancer staging, their ...
Reliability in diagnosing and treating brain tumors depends on the accurate grading of histopathological images. However, limited scalability, adaptability, and interpretability challenge current methods for frequently grading brain tumors to accurat...
BACKGROUND: Recent advances in histology scanning technology and Artificial Intelligence (AI) offer great opportunities to support cancer diagnosis. The inability to interpret the extracted features and model predictions is one of the major issues li...
OBJECTIVE: This study aimed to develop an interpretable machine learning model integrating delayed-phase contrast-enhanced CT radiomics with clinical features for noninvasive prediction of pathological grading in appendiceal pseudomyxoma peritonei (P...
BACKGROUND: Accurately distinguishing the different molecular subtypes of 2021 World Health Organization (WHO) grade 4 Central Nervous System (CNS) gliomas is highly relevant for prognostic stratification and personalized treatment.
INTRODUCTION: Histopathological evaluation of prostate biopsies using the Gleason scoring system is critical for prostate cancer diagnosis and treatment selection. However, grading variability among pathologists can lead to inconsistent assessments, ...
OBJECTIVE: To develop and evaluate a intralesional and perilesional radiomics strategy based on different machine learning model to differentiate International Society of Urological Pathology (ISUP) grade > 2 group and ISUP ≤ 2 prostate cancers (PCa)...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.