Intracranial hemorrhage segmentation and classification framework in computer tomography images using deep learning techniques.

Journal: Scientific reports
PMID:

Abstract

By helping the neurosurgeon create treatment strategies that increase the survival rate, automotive diagnosis and CT (Computed Tomography) hemorrhage segmentation (CT) could be beneficial. Owing to the significance of medical image segmentation and the difficulties in carrying out human operations, a wide variety of automated techniques for this purpose have been developed, with a primary focus on particular image modalities. In this paper, MUNet (Multiclass-UNet) based Intracranial Hemorrhage Segmentation and Classification Framework (IHSNet) is proposed to successfully segment multiple kinds of hemorrhages while the fully connected layers help in classifying the type of hemorrhages.The segmentation accuracy rates for hemorrhages are 98.53% with classification accuracy stands at 98.71% when using the suggested approach. There is potential for this suggested approach to be expanded in the future to handle further medical picture segmentation issues. Intraventricular hemorrhage (IVH), Epidural hemorrhage (EDH), Intraparenchymal hemorrhage (IPH), Subdural hemorrhage (SDH), Subarachnoid hemorrhage (SAH) are the subtypes involved in intracranial hemorrhage (ICH) whose DICE coefficients are 0.77, 0.84, 0.64, 0.80, and 0.92 respectively.The proposed method has great deal of clinical application potential for computer-aided diagnostics, which can be expanded in the future to handle further medical picture segmentation and to tackle with the involved issues.

Authors

  • S Nafees Ahmed
    School of Electronics Engineering, Vellore Institute of Technology, Vellore, India.
  • P Prakasam
    School of Electronics Engineering, Vellore Institute of Technology, Vellore, India. Electronic address: prakasamp@gmail.com.