Inconsistency of AI in intracranial aneurysm detection with varying dose and image reconstruction.

Journal: Scientific reports
Published Date:

Abstract

Scanner-related changes in data quality are common in medical imaging, yet monitoring their impact on diagnostic AI performance remains challenging. In this study, we performed standardized consistency testing of an FDA-cleared and CE-marked AI for triage and notification of intracranial aneurysms across changes in image data quality caused by dose and image reconstruction. Our assessment was based on repeated examinations of a head CT phantom designed for AI evaluation, replicating a patient with three intracranial aneurysms in the anterior, middle and posterior circulation. We show that the AI maintains stable performance within the medium dose range but produces inconsistent results at reduced dose and, unexpectedly, at higher dose when filtered back projection is used. Data quality standards required for AI are stricter than those for neuroradiologists, who report higher aneurysm visibility rates and experience performance degradation only at substantially lower doses, with no decline at higher doses.

Authors

  • Leonie Goelz
    Department of Radiology and Neuroradiology, BG Klinikum Unfallkrankenhaus Berlin, Berlin, Germany.
  • Angelo Laudani
    Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
  • Ulrich Genske
    Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
  • Michael Scheel
    Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin Institute of Health (BIH), Department of Neuroradiology, 10117 Berlin, Germany.
  • Georg Bohner
    Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
  • Hans-Christian Bauknecht
    Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
  • Sven Mutze
    Department of Radiology and Neuroradiology, BG Klinikum Unfallkrankenhaus Berlin, Berlin, Germany.
  • Bernd Hamm
    Department of Diagnostic and Interventional Radiology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
  • Paul Jahnke
    Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany. paul.jahnke@charite.de.