Enhanced reconstruction of atomic force microscopy cell images to super-resolution.
Journal:
Journal of microscopy
Published Date:
Aug 1, 2025
Abstract
Atomic force microscopy (AFM) plays a pivotal role in cell biology research. It enables scientists to observe the morphology of cell surfaces at the nanoscale, providing essential data for understanding cellular functions, including cell-cell interactions and responses to the microenvironment. Nevertheless, AFM-captured cell images frequently suffer from artefacts, which significantly hinder detailed analyses of cell structures. In this study, we developed a cross-module resolution enhancement method for post-processing AFM cell images. The method leverages the AFM topological deep learning neural network. We propose an enhanced spatial fusion structure and an optimised back-projection mechanism within an adversarial-based super-resolution network to detect weak signals and complex textures unique to AFM cell images. Furthermore, we designed a crossover-based frequency division module, capitalising on the distinct frequency characteristics of AFM images. This module effectively separates and enhances features pertinent to cell structure. In this paper, experiments were conducted using AFM images of various cells, and the results demonstrated the model's superiority. It substantially enhances image quality compared to existing methods. Specifically, the peak signal-to-noise ratio (PSNR) of the reconstructed image increased by 1.65 decibels, from 28.121 to 29.771, the structural similarity (SSIM) increased by 0.041, from 0.746 to 0.787, the Learned Perceptual Image Patch Similarity (LPIPS) decreased by 0.205, from 0.437 to 0.232, the Fréchet Inception Distance (FID) decreased by 6.996, from 55.442 to 48.446 and the Natural Image Quality Evaluator (NIQE) decreased by 0.847, from 4.296 to 3.449. Lay abstract: This study proposes a deep learning-based cross-module method for super-resolving AFM cell images, integrating frequency division and adaptive fusion modules. It boosts PSNR by 1.65 dB and SSIM by 0.041, accurately recovering cellular microstructures, thus significantly aiding cell biology research and biomedicine applications.