Rapid classification of Camellia seed varieties and non-destructive high-throughput quantitative analysis of fatty acids based on non-targeted fingerprint spectroscopy combined with chemometrics.
Journal:
Food chemistry
Published Date:
Feb 1, 2025
Abstract
Camellia oil is a high-quality vegetable oil rich in unsaturated fatty acids (FAs), with quality standardization challenged by the diversity of Camellia seed varieties. This study compared spectroscopy techniques (Near-Infrared [NIR] vs Mid-Infrared [MIR] spectroscopy) and analytical models (Discriminant Analysis [DA], Partial Least Squares [PLS], and Artificial Neural Networks [ANN]), seeking to classify Camellia seed varieties and estimate oil and principal FAs composition. The PCA analysis effectively discriminated among various Camellia seed varieties, likely due to variations in their oil and principal FAs compositions. Significantly, the NIR-based DA model significantly outperformed MIR, achieving 100 % accuracy in distinguishing Camellia seed varieties. In terms of predicting the oil and principal FAs compositions in Camellia seeds, NIR-based predictions models outperformed those derived from MIR, with PLS models surpassing ANN models. This study validated the potential of NIR technology combined with chemometrics for rapid, high-throughput, non-destructive identification of Camellia seeds.