Personalized glucose forecasting for people with type 1 diabetes using large language models.
Journal:
Computer methods and programs in biomedicine
PMID:
40188577
Abstract
BACKGROUND AND OBJECTIVE: Type 1 Diabetes (T1D) is an autoimmune disease that requires exogenous insulin via Multiple Daily Injections (MDIs) or subcutaneous pumps to maintain targeted glucose levels. Despite the advances in Continuous Glucose Monitoring (CGM), controlling glucose levels remains challenging. Large Language Models (LLMs) have produced impressive results in text processing, but their performance with other data modalities remains unexplored. The aim of this study is three-fold. First, to evaluate the effectiveness of LLM-based models for glucose forecasting. Second, to compare the performance of different models for predicting glucose in T1D individuals treated with MDIs and pumps. Lastly, to create a personalized approach based on patient-specific training and adaptive model selection.