Identification of dental related ChatGPT generated abstracts by senior and young academicians versus artificial intelligence detectors and a similarity detector.
Journal:
Scientific reports
PMID:
40175423
Abstract
Several researchers have investigated the consequences of using ChatGPT in the education industry. Their findings raised doubts regarding the probable effects that ChatGPT may have on the academia. As such, the present study aimed to assess the ability of three methods, namely: (1) academicians (senior and young), (2) three AI detectors (GPT-2 output detector, Writefull GPT detector, and GPTZero) and (3) one plagiarism detector, to differentiate between human- and ChatGPT-written abstracts. A total of 160 abstracts were assessed by those three methods. Two senior and two young academicians used a newly developed rubric to assess the type and quality of 80 human-written and 80 ChatGPT-written abstracts. The results were statistically analysed using crosstabulation and chi-square analysis. Bivariate correlation and accuracy of the methods were assessed. The findings demonstrated that all the three methods made a different variety of incorrect assumptions. The level of the academician experience may play a role in the detection ability with senior academician 1 demonstrating superior accuracy. GPTZero AI and similarity detectors were very good at accurately identifying the abstracts origin. In terms of abstract type, every variable positively correlated, except in the case of similarity detectors (pā<ā0.05). Human-AI collaborations may significantly benefit the identification of the abstract origins.