Advancing Prosthetic Hand Capabilities Through Biomimicry and Neural Interfaces.
Journal:
Neurorehabilitation and neural repair
Published Date:
Apr 24, 2025
Abstract
Background and ObjectivesProsthetic hand development is undergoing a transformative phase, blending biomimicry and neural interface technologies to redefine functionality and sensory feedback. This article explores the symbiotic relationship between biomimetic design principles and neural interface technology (NIT) in advancing prosthetic hand capabilities.MethodsDrawing inspiration from biological systems, researchers aim to replicate the intricate movements and capabilities of the human hand through innovative prosthetic designs. Central to this endeavor is NIT, facilitating seamless communication between artificial devices and the human nervous system. Recent advances in fabrication methods have propelled brain-computer interfaces, enabling precise control of prosthetic hands by decoding neural activity.ResultsAnatomical complexities of the human hand underscore the importance of understanding biomechanics, neuroanatomy, and control mechanisms for crafting effective prosthetic solutions. Furthermore, achieving the goal of a fully functional cyborg hand necessitates a multidisciplinary approach and biomimetic design to replicate the body's inherent capabilities. By incorporating the expertise of clinicians, tissue engineers, bioengineers, electronic and data scientists, the next generation of the implantable devices is not only anatomically and biomechanically accurate but also offer intuitive control, sensory feedback, and proprioception, thereby pushing the boundaries of current prosthetic technology.ConclusionBy integrating machine learning algorithms, biomechatronic principles, and advanced surgical techniques, prosthetic hands can achieve real-time control while restoring tactile sensation and proprioception. This manuscript contributes novel approaches to prosthetic hand development, with potential implications for enhancing the functionality, durability, and safety of the prosthetic limb.