MRI super-resolution reconstruction using efficient diffusion probabilistic model with residual shifting.

Journal: Physics in medicine and biology
Published Date:

Abstract

Magnetic resonance imaging (MRI) is essential in clinical and research contexts, providing exceptional soft-tissue contrast. However, prolonged acquisition times often lead to patient discomfort and motion artifacts. Diffusion-based deep learning super-resolution (SR) techniques reconstruct high-resolution (HR) images from low-resolution (LR) pairs, but they involve extensive sampling steps, limiting real-time application. To overcome these issues, this study introduces a residual error-shifting mechanism markedly reducing sampling steps while maintaining vital anatomical details, thereby accelerating MRI reconstruction.We developed Res-SRDiff, a novel diffusion-based SR framework incorporating residual error shifting into the forward diffusion process. This integration aligns the degraded HR and LR distributions, enabling efficient HR image reconstruction. We evaluated Res-SRDiff using ultra-high-field brain T1 MP2RAGE maps and T2-weighted prostate images, benchmarking it against Bicubic, Pix2pix, CycleGAN, SPSR, ISB, and TM-DDPM methods. Quantitative assessments employed peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), gradient magnitude similarity deviation (GMSD), and learned perceptual image patch similarity. Additionally, we qualitatively and quantitatively assessed the proposed framework's individual components through an ablation study and conducted a Likert-based image quality evaluation.Res-SRDiff significantly surpassed most comparison methods regarding PSNR, SSIM, and GMSD for both datasets, with statistically significant improvements (p-values≪0.05). The model achieved high-fidelity image reconstruction using only four sampling steps, drastically reducing computation time to under one second per slice. In contrast, traditional methods like TM-DDPM and ISB required approximately 20 and 38 s per slice, respectively. Qualitative analysis showed Res-SRDiff effectively preserved fine anatomical details and lesion morphologies. The Likert study indicated that our method received the highest scores,4.14±0.77(brain) and4.80±0.40(prostate).Res-SRDiff demonstrates efficiency and accuracy, markedly improving computational speed and image quality. Incorporating residual error shifting into diffusion-based SR facilitates rapid, robust HR image reconstruction, enhancing clinical MRI workflow and advancing medical imaging research. Code available athttps://github.com/mosaf/Res-SRDiff.

Authors

  • Mojtaba Safari
    Département de Physique, de Génie Physique et D'optique, et Centre de Recherche sur le Cancer, Université Laval, Québec, Québec, Canada.
  • Shansong Wang
    Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America.
  • Zach Eidex
    Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.
  • Qiang Li
    Department of Dermatology, Air Force Medical Center, PLA, Beijing, People's Republic of China.
  • Richard L J Qiu
    Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States of America.
  • Erik H Middlebrooks
    From the Department of Radiology, Mayo Clinic, Jacksonville, FL, USA (Z.L., X.Z., S.T., E.M.W., V.G., E.H.M.); Department of Radiology, Peking Union Medical College Hospital, Beijing, China (Z.L.); Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland (T.Y.); Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland (T.Y.); LTS5, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (T.Y.); Siemens Medical Solutions USA, Inc., Jacksonville, FL, USA (J.M.); MR Application Predevelopment, Siemens Healthineers AG, Forchheim, Germany (P.L.); Siemens Medical Solutions USA, Inc., Scottsdale, AZ, USA (H.M.); Department of Radiology, Mayo Clinic, Scottsdale, AZ, USA (H.M.).
  • David S Yu
    Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
  • Xiaofeng Yang
    Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.