An AI-based tool for prosthetic crown segmentation serving automated intraoral scan-to-CBCT registration in challenging high artifact scenarios.

Journal: The Journal of prosthetic dentistry
Published Date:

Abstract

STATEMENT OF PROBLEM: Accurately registering intraoral and cone beam computed tomography (CBCT) scans in patients with metal artifacts poses a significant challenge. Whether a cloud-based platform trained for artificial intelligence (AI)-driven segmentation can improve registration is unclear.

Authors

  • Bahaaeldeen M Elgarba
    OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Belgium, 3000 Leuven, Belgium; Department of Prosthodontics, Faculty of Dentistry, Tanta University, 31511 Tanta, Egypt.
  • Saleem Ali
    OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.
  • Rocharles Cavalcante Fontenele
    OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Department of Oral & Maxillofacial Surgery, University Hospitals Leuven, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium; Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Sao Paulo, Brazil.
  • Jan Meeus
    Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.
  • Reinhilde Jacobs
    OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Department of Oral & Maxillofacial Surgery, University Hospitals Leuven, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium; Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden. Electronic address: reinhilde.jacobs@ki.se.