Enhanced security for medical images using a new 5D hyper chaotic map and deep learning based segmentation.
Journal:
Scientific reports
Published Date:
Jul 2, 2025
Abstract
Medical image encryption is important for maintaining the confidentiality of sensitive medical data and protecting patient privacy. Contemporary healthcare systems store significant patient data in text and graphic form. This research proposes a New 5D hyperchaotic system combined with a customised U-Net architecture. Chaotic maps have become an increasingly popular method for encryption because of their remarkable characteristics, including statistical randomness and sensitivity to initial conditions. The significant region is segmented from the medical images using the U-Net network, and its statistics are utilised as initial conditions to generate the new random sequence. Initially, zig-zag scrambling confuses the pixel position of a medical image and applies further permutation with a new 5D hyperchaotic sequence. Two stages of diffusion are used, such as dynamic DNA flip and dynamic DNA XOR, to enhance the encryption algorithm's security against various attacks. The randomness of the New 5D hyperchaotic system is verified using the NIST SP800-22 statistical test, calculating the Lyapunov exponent and plotting the attractor diagram of the chaotic sequence. The algorithm validates with statistical measures such as PSNR, MSE, NPCR, UACI, entropy, and Chi-square values. Evaluation is performed for test images yields average horizontal, vertical, and diagonal correlation coefficients of -0.0018, -0.0002, and 0.0007, respectively, Shannon entropy of 7.9971, Kolmogorov Entropy value of 2.9469, NPCR of 99.61%, UACI of 33.49%, Chi-square "PASS" at both the 5% (293.2478) and 1% (310.4574) significance levels, key space is 2 and an average encryption time of approximately 2.93 s per 256 × 256 image on a standard desktop CPU. The performance comparisons use various encryption methods and demonstrate that the proposed method ensures secure reliability against various challenges.