AG-MS3D-CNN multiscale attention guided 3D convolutional neural network for robust brain tumor segmentation across MRI protocols.
Journal:
Scientific reports
Published Date:
Jul 7, 2025
Abstract
Accurate segmentation of brain tumors from multimodal Magnetic Resonance Imaging (MRI) plays a critical role in diagnosis, treatment planning, and disease monitoring in neuro-oncology. Traditional methods of tumor segmentation, often manual and labour-intensive, are prone to inconsistencies and inter-observer variability. Recently, deep learning models, particularly Convolutional Neural Networks (CNNs), have shown great promise in automating this process. However, these models face challenges in terms of generalization across diverse datasets, accurate tumor boundary delineation, and uncertainty estimation. To address these challenges, we propose AG-MS3D-CNN, an attention-guided multiscale 3D convolutional neural network for brain tumor segmentation. Our model integrates local and global contextual information through multiscale feature extraction and leverages spatial attention mechanisms to enhance boundary delineation, particularly in complex tumor regions. We also introduce Monte Carlo dropout for uncertainty estimation, providing clinicians with confidence scores for each segmentation, which is crucial for informed decision-making. Furthermore, we adopt a multitask learning framework, which enables the simultaneous segmentation, classification, and volume estimation of tumors. To ensure robustness and generalizability across diverse MRI acquisition protocols and scanners, we integrate a domain adaptation module into the network. Extensive evaluations on the BraTS 2021 dataset and additional external datasets, such as OASIS, ADNI, and IXI, demonstrate the superior performance of AG-MS3D-CNN compared to existing state-of-the-art methods. Our model achieves high Dice scores and shows excellent robustness, making it a valuable tool for clinical decision support in neuro-oncology.