AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Brain Neoplasms

Showing 1 to 10 of 1007 articles

Clear Filters

Brain tumor classification using MRI images and deep learning techniques.

PloS one
Brain tumors pose a significant medical challenge, necessitating early detection and precise classification for effective treatment. This study aims to address this challenge by introducing an automated brain tumor classification system that utilizes...

Systematic review and epistemic meta-analysis to advance binomial AI-radiomics integration for predicting high-grade glioma progression and enhancing patient management.

Scientific reports
High-grade gliomas, particularly glioblastoma (MeSH:Glioblastoma), are among the most aggressive and lethal central nervous system tumors, necessitating advanced diagnostic and prognostic strategies. This systematic review and epistemic meta-analysis...

Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning.

Scientific reports
This study proposes a novel approach to predict the efficacy of bevacizumab (BEV) in treating peritumoral edema in metastatic brain tumor patients by integrating advanced machine learning (ML) techniques with comprehensive imaging and clinical data. ...

A quantitative characterization of the heterogeneous response of glioblastoma U-87 MG cell line to temozolomide.

Scientific reports
Most cancers are genetically and phenotypically heterogeneous. This includes subpopulations of cells with different levels of sensitivity to chemotherapy, which may lead to treatment failure as the more resistant cells can survive drug treatment and ...

A controlled trial examining large Language model conformity in psychiatric assessment using the Asch paradigm.

BMC psychiatry
BACKGROUND: Despite significant advances in AI-driven medical diagnostics, the integration of large language models (LLMs) into psychiatric practice presents unique challenges. While LLMs demonstrate high accuracy in controlled settings, their perfor...

Fusion-Brain-Net: A Novel Deep Fusion Model for Brain Tumor Classification.

Brain and behavior
PROBLEM: Brain tumors are among the most prevalent and lethal diseases. Early diagnosis and precise treatment are crucial. However, the manual classification of brain tumors is a laborious and complex task.

OS-DETR: End-to-end brain tumor detection framework based on orthogonal channel shuffle networks.

PloS one
OrthoNets use the Gram-Schmidt process to achieve orthogonality among filters but do not impose constraints on the internal orthogonality of individual filters. To reduce the risk of overfitting, especially in scenarios with limited data such as medi...

A multi-layered defense against adversarial attacks in brain tumor classification using ensemble adversarial training and feature squeezing.

Scientific reports
Deep learning, particularly convolutional neural networks (CNNs), has proven valuable for brain tumor classification, aiding diagnostic and therapeutic decisions in medical imaging. Despite their accuracy, these models are vulnerable to adversarial a...

Machine learning for grading prediction and survival analysis in high grade glioma.

Scientific reports
We developed and validated a magnetic resonance imaging (MRI)-based radiomics model for the classification of high-grade glioma (HGG) and determined the optimal machine learning (ML) approach. This retrospective analysis included 184 patients (59 gra...

A self-supervised multimodal deep learning approach to differentiate post-radiotherapy progression from pseudoprogression in glioblastoma.

Scientific reports
Accurate differentiation of pseudoprogression (PsP) from True Progression (TP) following radiotherapy (RT) in glioblastoma patients is crucial for optimal treatment planning. However, this task remains challenging due to the overlapping imaging chara...