Improving Large Language Models' Summarization Accuracy by Adding Highlights to Discharge Notes: Comparative Evaluation.
Journal:
JMIR medical informatics
Published Date:
Jul 24, 2025
Abstract
BACKGROUND: The American Medical Association recommends that electronic health record (EHR) notes, often dense and written in nuanced language, be made readable for patients and laypeople, a practice we refer to as the simplification of discharge notes. Our approach to achieving the simplification of discharge notes involves a process of incremental simplification steps to achieve the ideal note. In this paper, we present the first step of this process. Large language models (LLMs) have demonstrated considerable success in text summarization. Such LLM summaries represent the content of EHR notes in an easier-to-read language. However, LLM summaries can also introduce inaccuracies.