Exploring species taxonomic kingdom using information entropy and nucleotide compositional features of coding sequences based on machine learning methods.
Journal:
Methods (San Diego, Calif.)
Published Date:
Apr 23, 2025
Abstract
The flow of genetic information from DNA to protein is governed by the central dogma of molecular biology. Genetic drift and mutations usually lead to changes in DNA composition, thereby affecting the coding sequences (CDS) that encode functional proteins. Analyzing the nucleotide distribution in the coding regions of species is crucial for understanding their evolution. In this study, we applied Markov processes to analyze codon formation in 37,031,061 CDSs across 3,735 species genomes, spanning viruses, archaea, bacteria, and eukaryotes, to explore compositional changes. Our results revealed species preferences for different nucleotides. Information entropies and Markov information densities show that eukaryotes exhibit higher redundancy, followed by viruses, suggesting more gene duplication in eukaryotes and high mutation rates in viruses. Evolutionary trends showed an increase in information entropy and a decrease in Markov entropy, with negative correlations between first- and second-order Markov information densities. Furthermore, uniform manifold approximation and projection (UMAP) was used to reduce information redundancy for revealing unique evolutionary patterns in species classification. The machine learning methods demonstrated excellent performance in species classification accuracy, providing profound insights into CDS evolution and protein synthesis.