Computational models for prediction of m6A sites using deep learning.
Journal:
Methods (San Diego, Calif.)
Published Date:
Apr 21, 2025
Abstract
RNA modifications play a crucial role in enhancing the structural and functional diversity of RNA molecules and regulating various stages of the RNA life cycle. Among these modifications, N6-Methyladenosine (m6A) is the most common internal modification in eukaryotic mRNAs and has been extensively studied over the past decade. Accurate identification of m6A modification sites is essential for understanding their function and underlying mechanisms. Traditional methods predominantly rely on machine learning techniques to recognize m6A sites, which often fail to capture the contextual features of these sites comprehensively. In this study, we comprehensively summarize previously published methods based on machine learning and deep learning. We also validate multiple deep learning approaches on benchmark dataset, including previously underutilized methods in m6A site prediction, pre-trained models specifically designed for biological sequence and other basic deep learning methods. Additionally, we further analyze the dataset features and interpret the model's predictions to enhance understanding. Our experimental results clearly demonstrate the effectiveness of the deep learning models, elucidating their strong potential in accurately recognizing m6A modification sites.