BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
Journal:
BMC bioinformatics
Published Date:
Feb 23, 2015
Abstract
BACKGROUND: Accurately predicting the binding affinities of large sets of protein-ligand complexes is a key challenge in computational biomolecular science, with applications in drug discovery, chemical biology, and structural biology. Since a scoring function (SF) is used to score, rank, and identify drug leads, the fidelity with which it predicts the affinity of a ligand candidate for a protein's binding site has a significant bearing on the accuracy of virtual screening. Despite intense efforts in developing conventional SFs, which are either force-field based, knowledge-based, or empirical, their limited predictive power has been a major roadblock toward cost-effective drug discovery. Therefore, in this work, we present novel SFs employing a large ensemble of neural networks (NN) in conjunction with a diverse set of physicochemical and geometrical features characterizing protein-ligand complexes to predict binding affinity.