Comprehensive insights into carbonic anhydrase inhibition: A triad of In vitro, In silico, and In vivo perspectives.
Journal:
Enzyme and microbial technology
Published Date:
Apr 17, 2025
Abstract
Carbonic anhydrases (CAs) are zinc-dependent metalloenzymes essential for sustaining physiological balance by facilitating the reversible conversion of carbon dioxide to its hydrated form. Their biological significance, coupled with their involvement in a wide array of pathological conditions, makes them attractive targets for therapeutic intervention. This review presents a comprehensive analysis of carbonic anhydrase inhibition through an integrated triad of in vitro, In silico, and In vivo perspectives. In vitro studies provide critical insights into the mechanisms of enzyme inhibition, enabling the identification and optimization of potent inhibitors while elucidating their structure-activity relationships. In silico methodologies, including docking, molecular dynamics (MD) simulation, virtual screening, ADMET, and QSAR analyses, have emerged as invaluable tools in rational drug design, streamlining the discovery and development of isoform-specific inhibitors. Complementing these efforts, In vivo investigations validate the pharmacokinetics, pharmacodynamics, and therapeutic efficacy of CA inhibitors (CAIs) in disease models, bridging the gap between laboratory findings and clinical applications. The therapeutic relevance of CAIs extends across multiple domains, including glaucoma, epilepsy, cancer, metabolic disorders, and infectious diseases. Emerging applications, such as their potential use in combating antimicrobial resistance and modulating immune responses, further underscore their versatility. However, challenges such as achieving isoform selectivity, minimizing off-target effects, and translating preclinical findings into clinical success persist. Advances in fragment-based drug design, artificial intelligence-driven discovery, and innovative experimental techniques are poised to address these limitations, paving the way for the next generation of CAIs.