Bioinformatics, interaction network analysis, and neural networks to characterize gene expression of radicular cyst and periapical granuloma.

Journal: Journal of endodontics
Published Date:

Abstract

INTRODUCTION: Bioinformatics has emerged as an important tool to analyze the large amount of data generated by research in different diseases. In this study, gene expression for radicular cysts (RCs) and periapical granulomas (PGs) was characterized based on a leader gene approach.

Authors

  • Fabiano de Oliveira Poswar
    Department of Dentistry, Universidade Estadual de Montes Claros, Minas Gerais, Brazil.
  • Lucyana Conceição Farias
    Department of Physiopathology, Universidade Estadual de Montes Claros, Minas Gerais, Brazil.
  • Carlos Alberto de Carvalho Fraga
    Department of Dentistry, Universidade Estadual de Montes Claros, Minas Gerais, Brazil.
  • Wilson Bambirra
    Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
  • Manoel Brito-Júnior
    Department of Dentistry, Universidade Estadual de Montes Claros, Minas Gerais, Brazil.
  • Manoel Damião Sousa-Neto
    Department of Restorative Dentistry, Faculty of Dentistry, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Sérgio Henrique Souza Santos
    Department of Physiopathology, Universidade Estadual de Montes Claros, Minas Gerais, Brazil; Department of Computer Science, Universidade Estadual de Montes Claros, Minas Gerais, Brazil;
  • Alfredo Maurício Batista de Paula
    Department of Dentistry, Universidade Estadual de Montes Claros, Minas Gerais, Brazil.
  • Marcos Flávio Silveira Vasconcelos D'Angelo
    Department of Computer Science, Universidade Estadual de Montes Claros, Minas Gerais, Brazil;
  • André Luiz Sena Guimarães
    Department of Dentistry, Universidade Estadual de Montes Claros, Minas Gerais, Brazil. Electronic address: andreluizguimaraes@gmail.com.