Using Linked Data for polarity classification of patients' experiences.
Journal:
Journal of biomedical informatics
Published Date:
Jul 23, 2015
Abstract
Polarity classification is the main subtask of sentiment analysis and opinion mining, well-known problems in natural language processing that have attracted increasing attention in recent years. Existing approaches mainly rely on the subjective part of text in which sentiment is expressed explicitly through specific words, called sentiment words. These approaches, however, are still far from being good in the polarity classification of patients' experiences since they are often expressed without any explicit expression of sentiment, but an undesirable or desirable effect of the experience implicitly indicates a positive or negative sentiment. This paper presents a method for polarity classification of patients' experiences of drugs using domain knowledge. We first build a knowledge base of polar facts about drugs, called FactNet, using extracted patterns from Linked Data sources and relation extraction techniques. Then, we extract generalized semantic patterns of polar facts and organize them into a hierarchy in order to overcome the missing knowledge issue. Finally, we apply the extracted knowledge, i.e., polar fact instances and generalized patterns, for the polarity classification task. Different from previous approaches for personal experience classification, the proposed method explores the potential benefits of polar facts in domain knowledge aiming to improve the polarity classification performance, especially in the case of indirect implicit experiences, i.e., experiences which express the effect of one entity on other ones without any sentiment words. Using our approach, we have extracted 9703 triplets of polar facts at a precision of 92.26 percent. In addition, experiments on drug reviews demonstrate that our approach can achieve 79.78 percent precision in polarity classification task, and outperforms the state-of-the-art sentiment analysis and opinion mining methods.