Adaptive Synchronization of Memristor-Based Neural Networks with Time-Varying Delays.

Journal: IEEE transactions on neural networks and learning systems
Published Date:

Abstract

In this paper, adaptive synchronization of memristor-based neural networks (MNNs) with time-varying delays is investigated. The dynamical analysis here employs results from the theory of differential equations with discontinuous right-hand sides as introduced by Filippov. Sufficient conditions for the global synchronization of MNNs are established with a general adaptive controller. The update gain of the controller can be adjusted to control the synchronization speed. The obtained results complement and improve the previously known results. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results.

Authors

  • Leimin Wang
    School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
  • Yi Shen
    Department of Oral Maxillofacial-Head Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China. Electronic address: shenyi_777@126.com.
  • Quan Yin
  • Guodong Zhang