Spatial differentiation of carbon emissions from energy consumption based on machine learning algorithm: A case study during 2015-2020 in Shaanxi, China.

Journal: Journal of environmental sciences (China)
PMID:

Abstract

Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide. Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem. Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables. In this study, we propose a machine learning algorithm for carbon emissions, a Bayesian optimized XGboost regression model, using multi-year energy carbon emission data and nighttime lights (NTL) remote sensing data from Shaanxi Province, China. Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models, with an R of 0.906 and RMSE of 5.687. We observe an annual increase in carbon emissions, with high-emission counties primarily concentrated in northern and central Shaanxi Province, displaying a shift from discrete, sporadic points to contiguous, extended spatial distribution. Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns, with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering. Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissions more accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment. This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.

Authors

  • Hongye Cao
    China Jikan Research Institute of Engineering Investigations and Design, Co., Ltd., Xi'an 710043, China; College of Geological Engineering and Geomatics, Chang'an University, Xi'an 710061, China.
  • Ling Han
    School of Land Engineering, Chang'an University, Xi'an 710064, China; Xi'an Key Laboratory of Territorial Spatial Information, School of Land Engineering, Chang'an University, Xi'an 710064, China. Electronic address: hanling@chd.edu.cn.
  • Ming Liu
    School of Land Engineering, Chang'an University, Xi'an 710064, China; Xi'an Key Laboratory of Territorial Spatial Information, School of Land Engineering, Chang'an University, Xi'an 710064, China. Electronic address: mingliu@chd.edu.cn.
  • Liangzhi Li
    College of Geological Engineering and Geomatics, Chang'an University, Xi'an 710061, China; Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.