Feature-Linking Model for Image Enhancement.

Journal: Neural computation
Published Date:

Abstract

Inspired by gamma-band oscillations and other neurobiological discoveries, neural networks research shifts the emphasis toward temporal coding, which uses explicit times at which spikes occur as an essential dimension in neural representations. We present a feature-linking model (FLM) that uses the timing of spikes to encode information. The first spiking time of FLM is applied to image enhancement, and the processing mechanisms are consistent with the human visual system. The enhancement algorithm achieves boosting the details while preserving the information of the input image. Experiments are conducted to demonstrate the effectiveness of the proposed method. Results show that the proposed method is effective.

Authors

  • Kun Zhan
    School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China ice.echo@gmail.com.
  • Jicai Teng
    School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China tengjc13@lzu.edu.cn.
  • Jinhui Shi
    School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China shijinhui10@gmail.com.
  • Qiaoqiao Li
    School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China liqq13@lzu.edu.cn.
  • Mingying Wang
    School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China mywang2014@lzu.edu.cn.