Combining machine learning and matching techniques to improve causal inference in program evaluation.

Journal: Journal of evaluation in clinical practice
Published Date:

Abstract

RATIONALE, AIMS AND OBJECTIVES: Program evaluations often utilize various matching approaches to emulate the randomization process for group assignment in experimental studies. Typically, the matching strategy is implemented, and then covariate balance is assessed before estimating treatment effects. This paper introduces a novel analytic framework utilizing a machine learning algorithm called optimal discriminant analysis (ODA) for assessing covariate balance and estimating treatment effects, once the matching strategy has been implemented. This framework holds several key advantages over the conventional approach: application to any variable metric and number of groups; insensitivity to skewed data or outliers; and use of accuracy measures applicable to all prognostic analyses. Moreover, ODA accepts analytic weights, thereby extending the methodology to any study design where weights are used for covariate adjustment or more precise (differential) outcome measurement.

Authors

  • Ariel Linden
    Linden Consulting Group, LLC, Ann Arbor, MI, USA.
  • Paul R Yarnold
    Optimal Data Analysis, LLC, Chicago, IL, USA.