Synergies Between Quantum Mechanics and Machine Learning in Reaction Prediction.
Journal:
Journal of chemical information and modeling
Published Date:
Oct 25, 2016
Abstract
Machine learning (ML) and quantum mechanical (QM) methods can be used in two-way synergy to build chemical reaction expert systems. The proposed ML approach identifies electron sources and sinks among reactants and then ranks all source-sink pairs. This addresses a bottleneck of QM calculations by providing a prioritized list of mechanistic reaction steps. QM modeling can then be used to compute the transition states and activation energies of the top-ranked reactions, providing additional or improved examples of ranked source-sink pairs. Retraining the ML model closes the loop, producing more accurate predictions from a larger training set. The approach is demonstrated in detail using a small set of organic radical reactions.