AIMC Topic: Molecular Conformation

Clear Filters Showing 1 to 10 of 104 articles

Amortized template matching of molecular conformations from cryoelectron microscopy images using simulation-based inference.

Proceedings of the National Academy of Sciences of the United States of America
Characterizing the conformational ensemble of biomolecular systems is key to understand their functions. Cryoelectron microscopy (cryo-EM) captures two-dimensional snapshots of biomolecular ensembles, giving in principle access to thermodynamics. How...

DihedralsDiff: A Diffusion Conformation Generation Model That Unifies Local and Global Molecular Structures.

Journal of chemical information and modeling
Significant advancements have been made in utilizing artificial intelligence to learn to generate molecular conformations, which has greatly facilitated the discovery of drug molecules. In particular, the rapid development of diffusion models has led...

Discriminating High from Low Energy Conformers of Druglike Molecules: An Assessment of Machine Learning Potentials and Quantum Chemical Methods.

Chemphyschem : a European journal of chemical physics and physical chemistry
Accurate and efficient prediction of high energy ligand conformations is important in structure-based drug discovery for the exclusion of unrealistic structures in docking-based virtual screening and de novo design approaches. In this work, we constr...

Accurate Prediction of ωB97X-D/6-31G* Equilibrium Geometries from a Neural Net Starting from Merck Molecular Force Field (MMFF) Molecular Mechanics Geometries.

Journal of chemical information and modeling
Starting from Merck Molecular Force Field (MMFF) geometries, a neural-net based model has been formulated to closely reproduce ωB97X-D/6-31G* equilibrium geometries for organic molecules. The model involves training to >6 million energy and force cal...

AGDIFF: Attention-Enhanced Diffusion for Molecular Geometry Prediction.

Journal of chemical information and modeling
Accurate prediction of molecular geometries is crucial for drug discovery and materials science. Existing fast conformer prediction algorithms often rely on approximate empirical energy functions, resulting in low accuracy. More accurate methods like...

ConfRank: Improving GFN-FF Conformer Ranking with Pairwise Training.

Journal of chemical information and modeling
Conformer ranking is a crucial task for drug discovery, with methods for generating conformers often based on molecular (meta)dynamics or sophisticated sampling techniques. These methods are constrained by the underlying force computation regarding r...

Conformational Space Profiling Enhances Generic Molecular Representation for AI-Powered Ligand-Based Drug Discovery.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
The molecular representation model is a neural network that converts molecular representations (SMILES, Graph) into feature vectors, and is an essential module applied across a wide range of artificial intelligence-driven drug discovery scenarios. Ho...

From mundane to surprising nonadditivity: drivers and impact on ML models.

Journal of computer-aided molecular design
Nonadditivity (NA) in Structure-Activity and Structure-Property Relationship (SAR) data is a rare but very information rich phenomenon. It can indicate conformational flexibility, structural rearrangements, and errors in assay results and structural ...

Modeling Zinc Complexes Using Neural Networks.

Journal of chemical information and modeling
Understanding the energetic landscapes of large molecules is necessary for the study of chemical and biological systems. Recently, deep learning has greatly accelerated the development of models based on quantum chemistry, making it possible to build...

MCPNET: Development of an interpretable deep learning model based on multiple conformations of the compound for predicting developmental toxicity.

Computers in biology and medicine
The development of deep learning models for predicting toxicological endpoints has shown great promise, but one of the challenges in the field is the accuracy and interpretability of these models. The bioactive conformation of a compound plays a crit...