Experimental study and artificial neural network modeling of tartrazine removal by photocatalytic process under solar light.

Journal: Water science and technology : a journal of the International Association on Water Pollution Research
PMID:

Abstract

This research focuses on the application of an artificial neural network (ANN) to predict the removal efficiency of tartrazine from simulated wastewater using a photocatalytic process under solar illumination. A program is developed in Matlab software to optimize the neural network architecture and select the suitable combination of training algorithm, activation function and hidden neurons number. The experimental results of a batch reactor operated under different conditions of pH, TiO concentration, initial organic pollutant concentration and solar radiation intensity are used to train, validate and test the networks. While negligible mineralization is demonstrated, the experimental results show that under sunlight irradiation, 85% of tartrazine is removed after 300 min using only 0.3 g/L of TiO powder. Therefore, irradiation time is prolonged and almost 66% of total organic carbon is reduced after 15 hours. ANN 5-8-1 with Bayesian regulation back-propagation algorithm and hyperbolic tangent sigmoid transfer function is found to be able to predict the response with high accuracy. In addition, the connection weights approach is used to assess the importance contribution of each input variable on the ANN model response. Among the five experimental parameters, the irradiation time has the greatest effect on the removal efficiency of tartrazine.

Authors

  • Aicha Sebti
    Département de Génie Chimique, Ecole Nationale Polytechnique, 10 Rue des Frères OUDEK, El Harrach 16200, Algérie E-mail: sebti.aicha@udes.dz; Unité de Développement des Equipements Solaires, UDES, Centre de Développement des Energies Renouvelables, CDER, 42415, Tipaza, Algérie.
  • Fatiha Souahi
    Département de Génie Chimique, Ecole Nationale Polytechnique, 10 Rue des Frères OUDEK, El Harrach 16200, Algérie E-mail: sebti.aicha@udes.dz.
  • Faroudja Mohellebi
    Département de Génie Chimique, Ecole Nationale Polytechnique, 10 Rue des Frères OUDEK, El Harrach 16200, Algérie E-mail: sebti.aicha@udes.dz.
  • Sadek Igoud
    Unité de Développement des Equipements Solaires, UDES, Centre de Développement des Energies Renouvelables, CDER, 42415, Tipaza, Algérie.