A neural network approach for fast, automated quantification of DIR performance.
Journal:
Medical physics
Published Date:
Aug 1, 2017
Abstract
PURPOSE: A critical step in adaptive radiotherapy (ART) workflow is deformably registering the simulation CT with the daily or weekly volumetric imaging. Quantifying the deformable image registration accuracy under these circumstances is a complex task due to the lack of known ground-truth landmark correspondences between the source data and target data. Generating landmarks manually (using experts) is time-consuming, and limited by image quality and observer variability. While image similarity metrics (ISM) may be used as an alternative approach to quantify the registration error, there is a need to characterize the ISM values by developing a nonlinear cost function and translate them to physical distance measures in order to enable fast, quantitative comparison of registration performance.