Prediction of bacterial small RNAs in the RsmA (CsrA) and ToxT pathways: a machine learning approach.
Journal:
BMC genomics
PMID:
28830349
Abstract
BACKGROUND: Small RNAs (sRNAs) constitute an important class of post-transcriptional regulators that control critical cellular processes in bacteria. Recent research using high-throughput transcriptomic approaches has led to a dramatic increase in the discovery of bacterial sRNAs. However, it is generally believed that the currently identified sRNAs constitute a limited subset of the bacterial sRNA repertoire. In several cases, sRNAs belonging to a specific class are already known and the challenge is to identify additional sRNAs belonging to the same class. In such cases, machine-learning approaches can be used to predict novel sRNAs in a given class.