Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning.

Journal: Phytopathology
Published Date:

Abstract

Northern leaf blight (NLB) can cause severe yield loss in maize; however, scouting large areas to accurately diagnose the disease is time consuming and difficult. We demonstrate a system capable of automatically identifying NLB lesions in field-acquired images of maize plants with high reliability. This approach uses a computational pipeline of convolutional neural networks (CNNs) that addresses the challenges of limited data and the myriad irregularities that appear in images of field-grown plants. Several CNNs were trained to classify small regions of images as containing NLB lesions or not; their predictions were combined into separate heat maps, then fed into a final CNN trained to classify the entire image as containing diseased plants or not. The system achieved 96.7% accuracy on test set images not used in training. We suggest that such systems mounted on aerial- or ground-based vehicles can help in automated high-throughput plant phenotyping, precision breeding for disease resistance, and reduced pesticide use through targeted application across a variety of plant and disease categories.

Authors

  • Chad DeChant
    First author: Department of Computer Science, Columbia University in the City of New York, 10027; second, fourth, and sixth authors: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; third author: Department of Mechanical Engineering, Columbia University; fifth author: Uber AI Labs, San Francisco 94103; seventh author: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University; and eighth author: Department of Mechanical Engineering and Institute of Data Science, Columbia University.
  • Tyr Wiesner-Hanks
    First author: Department of Computer Science, Columbia University in the City of New York, 10027; second, fourth, and sixth authors: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; third author: Department of Mechanical Engineering, Columbia University; fifth author: Uber AI Labs, San Francisco 94103; seventh author: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University; and eighth author: Department of Mechanical Engineering and Institute of Data Science, Columbia University.
  • Siyuan Chen
    First author: Department of Computer Science, Columbia University in the City of New York, 10027; second, fourth, and sixth authors: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; third author: Department of Mechanical Engineering, Columbia University; fifth author: Uber AI Labs, San Francisco 94103; seventh author: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University; and eighth author: Department of Mechanical Engineering and Institute of Data Science, Columbia University.
  • Ethan L Stewart
    First author: Department of Computer Science, Columbia University in the City of New York, 10027; second, fourth, and sixth authors: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; third author: Department of Mechanical Engineering, Columbia University; fifth author: Uber AI Labs, San Francisco 94103; seventh author: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University; and eighth author: Department of Mechanical Engineering and Institute of Data Science, Columbia University.
  • Jason Yosinski
    First author: Department of Computer Science, Columbia University in the City of New York, 10027; second, fourth, and sixth authors: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; third author: Department of Mechanical Engineering, Columbia University; fifth author: Uber AI Labs, San Francisco 94103; seventh author: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University; and eighth author: Department of Mechanical Engineering and Institute of Data Science, Columbia University.
  • Michael A Gore
    First author: Department of Computer Science, Columbia University in the City of New York, 10027; second, fourth, and sixth authors: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; third author: Department of Mechanical Engineering, Columbia University; fifth author: Uber AI Labs, San Francisco 94103; seventh author: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University; and eighth author: Department of Mechanical Engineering and Institute of Data Science, Columbia University.
  • Rebecca J Nelson
    First author: Department of Computer Science, Columbia University in the City of New York, 10027; second, fourth, and sixth authors: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853; third author: Department of Mechanical Engineering, Columbia University; fifth author: Uber AI Labs, San Francisco 94103; seventh author: Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University; and eighth author: Department of Mechanical Engineering and Institute of Data Science, Columbia University.
  • Hod Lipson
    Columbia University, Department of Mechanical Engineering, New York, NY 10027, USA.