Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm.
Journal:
Computer methods and programs in biomedicine
Published Date:
Sep 8, 2017
Abstract
BACKGROUND AND OBJECTIVE: Diabetes is a silent killer. The main cause of this disease is the presence of excessive amounts of metabolites such as glucose. There were about 387 million diabetic people all over the world in 2014. The financial burden of this disease has been calculated to be about $13,700 per year. According to the World Health Organization (WHO), these figures will more than double by the year 2030. This cost will be reduced dramatically if someone can predict diabetes statistically on the basis of some covariates. Although several classification techniques are available, it is very difficult to classify diabetes. The main objectives of this paper are as follows: (i) Gaussian process classification (GPC), (ii) comparative classifier for diabetes data classification, (iii) data analysis using the cross-validation approach, (iv) interpretation of the data analysis and (v) benchmarking our method against others.