The Thermodynamic Basis of the Fuzzy Interaction of an Intrinsically Disordered Protein.

Journal: Angewandte Chemie (International ed. in English)
Published Date:

Abstract

Many intrinsically disordered proteins (IDP) that fold upon binding retain conformational heterogeneity in IDP-target complexes. The thermodynamics of such fuzzy interactions is poorly understood. Herein we introduce a thermodynamic framework, based on analysis of ITC and CD spectroscopy data, that provides experimental descriptions of IDP association in terms of folding and binding contributions which can be predicted using sequence folding propensities and molecular modeling. We show how IDP can modulate the entropy and enthalpy by adapting their bound-state structural ensemble to achieve optimal binding. This is explained in terms of a free-energy landscape that provides the relationship between free-energy, sequence folding propensity, and disorder. The observed "fuzzy" behavior is possible because of IDP flexibility and also because backbone and side-chain interactions are, to some extent, energetically decoupled allowing IDP to minimize energetically unfavorable folding.

Authors

  • San Hadži
    Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, Slovenia.
  • Andrej Mernik
    Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, Slovenia.
  • Črtomir Podlipnik
    Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, Slovenia.
  • Remy Loris
    Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel and Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050, Brussel, Belgium.
  • Jurij Lah
    Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, Slovenia.