PCG Classification Using Multidomain Features and SVM Classifier.

Journal: BioMed research international
Published Date:

Abstract

This paper proposes a method using multidomain features and support vector machine (SVM) for classifying normal and abnormal heart sound recordings. The database was provided by the PhysioNet/CinC Challenge 2016. A total of 515 features are extracted from nine feature domains, i.e., time interval, frequency spectrum of states, state amplitude, energy, frequency spectrum of records, cepstrum, cyclostationarity, high-order statistics, and entropy. Correlation analysis is conducted to quantify the feature discrimination abilities, and the results show that "frequency spectrum of state", "energy", and "entropy" are top domains to contribute effective features. A SVM with radial basis kernel function was trained for signal quality estimation and classification. The SVM classifier is independently trained and tested by many groups of top features. It shows the average of sensitivity, specificity, and overall score are high up to 0.88, 0.87, and 0.88, respectively, when top 400 features are used. This score is competitive to the best previous scores. The classifier has very good performance with even small number of top features for training and it has stable output regardless of randomly selected features for training. These simulations demonstrate that the proposed features and SVM classifier are jointly powerful for classifying heart sound recordings.

Authors

  • Hong Tang
    Department of Orthopedics, Orthopedic Center of Chinese PLA, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P.R.China.
  • Ziyin Dai
    Department of Biomedical Engineering, Dalian University of Technology, Dalian, China.
  • Yuanlin Jiang
    Department of Biomedical Engineering, Dalian University of Technology, Dalian, China.
  • Ting Li
    Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  • Chengyu Liu
    Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.