Approximate dynamic programming approaches for appointment scheduling with patient preferences.

Journal: Artificial intelligence in medicine
Published Date:

Abstract

During the appointment booking process in out-patient departments, the level of patient satisfaction can be affected by whether or not their preferences can be met, including the choice of physicians and preferred time slot. In addition, because the appointments are sequential, considering future possible requests is also necessary for a successful appointment system. This paper proposes a Markov decision process model for optimizing the scheduling of sequential appointments with patient preferences. In contrast to existing models, the evaluation of a booking decision in this model focuses on the extent to which preferences are satisfied. Characteristics of the model are analysed to develop a system for formulating booking policies. Based on these characteristics, two types of approximate dynamic programming algorithms are developed to avoid the curse of dimensionality. Experimental results suggest directions for further fine-tuning of the model, as well as improving the efficiency of the two proposed algorithms.

Authors

  • Xin Li
    Veterinary Diagnostic Center, Shanghai Animal Disease Control Center, Shanghai, China.
  • Jin Wang
    Cells Vision (Guangzhou) Medical Technology Inc., Guangzhou, China. Electronic address: wangjin@cellsvision.com.
  • Richard Y K Fung
    Department of Systems Engineering and Engineering Management, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong.