Optimization of classification and regression analysis of four monoclonal antibodies from Raman spectra using collaborative machine learning approach.

Journal: Talanta
Published Date:

Abstract

The use of monoclonal antibodies (mAbs) constitutes one of the most important strategies to treat patients suffering from cancers such as hematological malignancies and solid tumors. These antibodies are prescribed by the physician and prepared by hospital pharmacists. An analytical control enables the quality of the preparations to be ensured. The aim of this study was to explore the development of a rapid analytical method for quality control. The method used four mAbs (Infliximab, Bevacizumab, Rituximab and Ramucirumab) at various concentrations and was based on recording Raman data and coupling them to a traditional chemometric and machine learning approach for data analysis. Compared to conventional linear approach, prediction errors are reduced with a data-driven approach using statistical machine learning methods. In the latter, preprocessing and predictive models are jointly optimized. An additional original aspect of the work involved on submitting the problem to a collaborative data challenge platform called Rapid Analytics and Model Prototyping (RAMP). This allowed using solutions from about 300 data scientists in collaborative work. Using machine learning, the prediction of the four mAbs samples was considerably improved. The best predictive model showed a combined error of 2.4% versus 14.6% using linear approach. The concentration and classification errors were 5.8% and 0.7%, only three spectra were misclassified over the 429 spectra of the test set. This large improvement obtained with machine learning techniques was uniform for all molecules but maximal for Bevacizumab with an 88.3% reduction on combined errors (2.1% versus 17.9%).

Authors

  • Laetitia Minh Maï Le
    European Georges Pompidou Hospital (AP-HP), Pharmacy Department, 75015 Paris, France; Lip(Sys)(2) - EA7357 - Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, F92290 Chatenay-Malabry, France.
  • Balázs Kégl
    Paris-Saclay Center for Data Science, Université Paris-Saclay, 91440 Orsay, France; LAL, CNRS, 91440 Orsay, France.
  • Alexandre Gramfort
    Paris-Saclay Center for Data Science, Université Paris-Saclay, 91440 Orsay, France; INRIA, Parietal team, Saclay, 91120 Palaiseau, France; LTCI, Télécom ParisTech, 75013 Paris, France.
  • Camille Marini
    Paris-Saclay Center for Data Science, Université Paris-Saclay, 91440 Orsay, France; CMAP, Ecole Polytechnique, 91128 Palaiseau, France.
  • David Nguyen
    Department of Plastic Surgery, Loma Linda University, Loma Linda, Calif.
  • Mehdi Cherti
    Paris-Saclay Center for Data Science, Université Paris-Saclay, 91440 Orsay, France; LAL, CNRS, 91440 Orsay, France.
  • Sana Tfaili
    Lip(Sys)(2) - EA7357 - Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, F92290 Chatenay-Malabry, France. Electronic address: sana.tfaili@u-psud.fr.
  • Ali Tfayli
    Lip(Sys)(2) - EA7357 - Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, F92290 Chatenay-Malabry, France.
  • Arlette Baillet-Guffroy
    Lip(Sys)(2) - EA7357 - Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, F92290 Chatenay-Malabry, France.
  • Patrice Prognon
    European Georges Pompidou Hospital (AP-HP), Pharmacy Department, 75015 Paris, France; Lip(Sys)(2) - EA7357 - Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, F92290 Chatenay-Malabry, France.
  • Pierre Chaminade
    Lip(Sys)(2) - EA7357 - Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, F92290 Chatenay-Malabry, France.
  • Eric Caudron
    European Georges Pompidou Hospital (AP-HP), Pharmacy Department, 75015 Paris, France; Lip(Sys)(2) - EA7357 - Chimie Analytique Pharmaceutique (FKA EA4041 Groupe de Chimie Analytique de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, F92290 Chatenay-Malabry, France.