Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology.

Journal: Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes
Published Date:

Abstract

Artificial intelligence (AI) is rapidly moving from an experimental phase to an implementation phase in many fields, including medicine. The combination of improved availability of large datasets, increasing computing power, and advances in learning algorithms has created major performance breakthroughs in the development of AI applications. In the last 5 years, AI techniques known as deep learning have delivered rapidly improving performance in image recognition, caption generation, and speech recognition. Radiology, in particular, is a prime candidate for early adoption of these techniques. It is anticipated that the implementation of AI in radiology over the next decade will significantly improve the quality, value, and depth of radiology's contribution to patient care and population health, and will revolutionize radiologists' workflows. The Canadian Association of Radiologists (CAR) is the national voice of radiology committed to promoting the highest standards in patient-centered imaging, lifelong learning, and research. The CAR has created an AI working group with the mandate to discuss and deliberate on practice, policy, and patient care issues related to the introduction and implementation of AI in imaging. This white paper provides recommendations for the CAR derived from deliberations between members of the AI working group. This white paper on AI in radiology will inform CAR members and policymakers on key terminology, educational needs of members, research and development, partnerships, potential clinical applications, implementation, structure and governance, role of radiologists, and potential impact of AI on radiology in Canada.

Authors

  • An Tang
    Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.
  • Roger Tam
  • Alexandre Cadrin-Chênevert
    Department of Medical Imaging, CISSS Lanaudière, Université Laval, Joliette, Québec, Canada.
  • Will Guest
    Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.
  • Jaron Chong
    Department of Radiology, McGill University Health Center, Montréal, Québec, Canada.
  • Joseph Barfett
  • Leonid Chepelev
    Department of Radiology, University of Ottawa, Ottawa, Ontario, Canada.
  • Robyn Cairns
    Department of Radiology, British Columbia's Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
  • J Ross Mitchell
    Mayo Clinic, Scottsdale, Dept. of Research.
  • Mark D Cicero
    Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
  • Manuel Gaudreau Poudrette
    Department of Radiology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
  • Jacob L Jaremko
    Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada.
  • Caroline Reinhold
    Department of Radiology, McGill University Health Center, Montréal, Québec, Canada.
  • Benoit Gallix
    Department of Radiology, McGill University Health Center, Montréal, Québec, Canada.
  • Bruce Gray
  • Raym Geis
    Department of Radiology, National Jewish Health, Denver, Colorado, USA.