Predictive Model of Linear Antimicrobial Peptides Active against Gram-Negative Bacteria.

Journal: Journal of chemical information and modeling
Published Date:

Abstract

Antimicrobial peptides (AMPs) have been identified as a potential new class of anti-infectives for drug development. There are a lot of computational methods that try to predict AMPs. Most of them can only predict if a peptide will show any antimicrobial potency, but to the best of our knowledge, there are no tools which can predict antimicrobial potency against particular strains. Here we present a predictive model of linear AMPs being active against particular Gram-negative strains relying on a semi-supervised machine-learning approach with a density-based clustering algorithm. The algorithm can well distinguish peptides active against particular strains from others which may also be active but not against the considered strain. The available AMP prediction tools cannot carry out this task. The prediction tool based on the algorithm suggested herein is available on https://dbaasp.org.

Authors

  • Boris Vishnepolsky
    Ivane Beritashvili Center of Experimental Biomedicine , Tbilisi 0160 , Georgia.
  • Andrei Gabrielian
    Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States.
  • Alex Rosenthal
    Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States.
  • Darrell E Hurt
    Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States.
  • Michael Tartakovsky
    Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States.
  • Grigol Managadze
    Ivane Beritashvili Center of Experimental Biomedicine , Tbilisi 0160 , Georgia.
  • Maya Grigolava
    Ivane Beritashvili Center of Experimental Biomedicine , Tbilisi 0160 , Georgia.
  • George I Makhatadze
    Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.
  • Malak Pirtskhalava
    Ivane Beritashvili Center of Experimental Biomedicine , Tbilisi 0160 , Georgia.