GPU-based deep convolutional neural network for tomographic phase microscopy with ℓ1 fitting and regularization.

Journal: Journal of biomedical optics
Published Date:

Abstract

Tomographic phase microscopy (TPM) is a unique imaging modality to measure the three-dimensional refractive index distribution of transparent and semitransparent samples. However, the requirement of the dense sampling in a large range of incident angles restricts its temporal resolution and prevents its application in dynamic scenes. Here, we propose a graphics processing unit-based implementation of a deep convolutional neural network to improve the performance of phase tomography, especially with much fewer incident angles. As a loss function for the regularized TPM, the ℓ1-norm sparsity constraint is introduced for both data-fidelity term and gradient-domain regularizer in the multislice beam propagation model. We compare our method with several state-of-the-art algorithms and obtain at least 14 dB improvement in signal-to-noise ratio. Experimental results on HeLa cells are also shown with different levels of data reduction.

Authors

  • Hui Qiao
    Tsinghua University, Department of Automation, Beijing, China.
  • Jiamin Wu
    Tsinghua University, Department of Automation, Beijing, China.
  • Xiaoxu Li
    Tsinghua University, Department of Automation, Beijing, China.
  • Morteza H Shoreh
    École Polytechnique Fédérale de Lausanne, School of Engineering, Laboratory of Optics, Lausanne, Switzerland.
  • Jingtao Fan
    Tsinghua University, Department of Automation, Beijing, China.
  • Qionghai Dai