An Adaptive Neural Spike Processor With Embedded Active Learning for Improved Unsupervised Sorting Accuracy.
Journal:
IEEE transactions on biomedical circuits and systems
Published Date:
Jun 1, 2018
Abstract
There is a need for integrated spike sorting processors in implantable devices with low power consumption that have improved accuracy. Learning the characteristics of the variable input neural signals and adapting the functionality of the sorting process can improve the accuracy. An adaptive spike sorting processor is presented accounting for the variation in the input signal noise characteristics and the variable difficulty in the selection of the spike characteristics, which significantly improves the accuracy. The adaptive spike processor was fabricated in 180-nm CMOS technology for proof of concept. It performs conditional detection, alignment, adaptive feature extraction, and online clustering with sorting threshold self-tuning capability. The chip was tested under different input signal conditions to demonstrate its adaptation capability providing a median classification accuracy of 84.5% and consuming 148 μW from a 1.8 V supply voltage.