Traditional machine learning for limited angle tomography.

Journal: International journal of computer assisted radiology and surgery
Published Date:

Abstract

PURPOSE: The application of traditional machine learning techniques, in the form of regression models based on conventional, "hand-crafted" features, to artifact reduction in limited angle tomography is investigated.

Authors

  • Yixing Huang
    Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 3, 91058, Erlangen, Germany. yixing.yh.huang@fau.de.
  • Yanye Lu
    Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 3, 91058, Erlangen, Germany. yanye.lu@fau.de.
  • Oliver Taubmann
    Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 3, 91058, Erlangen, Germany.
  • Guenter Lauritsch
    Siemens Healthcare GmbH, Siemensstr. 1, 91301, Forchheim, Germany.
  • Andreas Maier
    Pattern Recognition Lab, University Erlangen-Nürnberg, Erlangen, Germany.