Improvement of image quality at CT and MRI using deep learning.

Journal: Japanese journal of radiology
Published Date:

Abstract

Deep learning has been developed by computer scientists. Here, we discuss techniques for improving the image quality of diagnostic computed tomography and magnetic resonance imaging with the aid of deep learning. We categorize the techniques for improving the image quality as "noise and artifact reduction", "super resolution" and "image acquisition and reconstruction". For each category, we present and outline the features of some studies.

Authors

  • Toru Higaki
    Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
  • Yuko Nakamura
    Department of Diagnostic Radiology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
  • Fuminari Tatsugami
    Department of Diagnostic Radiology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
  • Takeshi Nakaura
    Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan (T.N., N.Y., N.K., Y.N., H.U., M.K., S.O., T.H.). Electronic address: kff00712@nifty.com.
  • Kazuo Awai
    Department of Diagnostic Radiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.