Deep Learning Electronic Cleansing for Single- and Dual-Energy CT Colonography.

Journal: Radiographics : a review publication of the Radiological Society of North America, Inc
Published Date:

Abstract

Electronic cleansing (EC) is used for computational removal of residual feces and fluid tagged with an orally administered contrast agent on CT colonographic images to improve the visibility of polyps during virtual endoscopic "fly-through" reading. A recent trend in CT colonography is to perform a low-dose CT scanning protocol with the patient having undergone reduced- or noncathartic bowel preparation. Although several EC schemes exist, they have been developed for use with cathartic bowel preparation and high-radiation-dose CT, and thus, at a low dose with noncathartic bowel preparation, they tend to generate cleansing artifacts that distract and mislead readers. Deep learning can be used for improvement of the image quality with EC at CT colonography. Deep learning EC can produce substantially fewer cleansing artifacts at dual-energy than at single-energy CT colonography, because the dual-energy information can be used to identify relevant material in the colon more precisely than is possible with the single x-ray attenuation value. Because the number of annotated training images is limited at CT colonography, transfer learning can be used for appropriate training of deep learning algorithms. The purposes of this article are to review the causes of cleansing artifacts that distract and mislead readers in conventional EC schemes, to describe the applications of deep learning and dual-energy CT colonography to EC of the colon, and to demonstrate the improvements in image quality with EC and deep learning at single-energy and dual-energy CT colonography with noncathartic bowel preparation. RSNA, 2018.

Authors

  • Rie Tachibana
    From the 3D Imaging Research Lab, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 25 New Chardon St, Suite 400C, Boston, MA 02114 (R.T., J.J.N., N.K., T.H., H.Y.); Department of Information Science and Technology, National Institute of Technology, Oshima College, Yamaguchi, Japan (R.T.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (J.O.); Department of Medical Physics, University of Applied Sciences Giessen, Giessen, Germany (N.K.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.K.); Department of Surgical Sciences, University of Torino, Turin, Italy (D.R.); and Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Candiolo, Turin, Italy (D.R.).
  • Janne J Näppi
    From the 3D Imaging Research Lab, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 25 New Chardon St, Suite 400C, Boston, MA 02114 (R.T., J.J.N., N.K., T.H., H.Y.); Department of Information Science and Technology, National Institute of Technology, Oshima College, Yamaguchi, Japan (R.T.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (J.O.); Department of Medical Physics, University of Applied Sciences Giessen, Giessen, Germany (N.K.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.K.); Department of Surgical Sciences, University of Torino, Turin, Italy (D.R.); and Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Candiolo, Turin, Italy (D.R.).
  • Junko Ota
    Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, 565-0871, Japan.
  • Nadja Kohlhase
    From the 3D Imaging Research Lab, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 25 New Chardon St, Suite 400C, Boston, MA 02114 (R.T., J.J.N., N.K., T.H., H.Y.); Department of Information Science and Technology, National Institute of Technology, Oshima College, Yamaguchi, Japan (R.T.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (J.O.); Department of Medical Physics, University of Applied Sciences Giessen, Giessen, Germany (N.K.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.K.); Department of Surgical Sciences, University of Torino, Turin, Italy (D.R.); and Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Candiolo, Turin, Italy (D.R.).
  • Toru Hironaka
    From the 3D Imaging Research Lab, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 25 New Chardon St, Suite 400C, Boston, MA 02114 (R.T., J.J.N., N.K., T.H., H.Y.); Department of Information Science and Technology, National Institute of Technology, Oshima College, Yamaguchi, Japan (R.T.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (J.O.); Department of Medical Physics, University of Applied Sciences Giessen, Giessen, Germany (N.K.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.K.); Department of Surgical Sciences, University of Torino, Turin, Italy (D.R.); and Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Candiolo, Turin, Italy (D.R.).
  • Se Hyung Kim
    From the 3D Imaging Research Lab, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 25 New Chardon St, Suite 400C, Boston, MA 02114 (R.T., J.J.N., N.K., T.H., H.Y.); Department of Information Science and Technology, National Institute of Technology, Oshima College, Yamaguchi, Japan (R.T.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (J.O.); Department of Medical Physics, University of Applied Sciences Giessen, Giessen, Germany (N.K.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.K.); Department of Surgical Sciences, University of Torino, Turin, Italy (D.R.); and Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Candiolo, Turin, Italy (D.R.).
  • Daniele Regge
    From the 3D Imaging Research Lab, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 25 New Chardon St, Suite 400C, Boston, MA 02114 (R.T., J.J.N., N.K., T.H., H.Y.); Department of Information Science and Technology, National Institute of Technology, Oshima College, Yamaguchi, Japan (R.T.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (J.O.); Department of Medical Physics, University of Applied Sciences Giessen, Giessen, Germany (N.K.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.K.); Department of Surgical Sciences, University of Torino, Turin, Italy (D.R.); and Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Candiolo, Turin, Italy (D.R.).
  • Hiroyuki Yoshida
    From the 3D Imaging Research Lab, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 25 New Chardon St, Suite 400C, Boston, MA 02114 (R.T., J.J.N., N.K., T.H., H.Y.); Department of Information Science and Technology, National Institute of Technology, Oshima College, Yamaguchi, Japan (R.T.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (J.O.); Department of Medical Physics, University of Applied Sciences Giessen, Giessen, Germany (N.K.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.K.); Department of Surgical Sciences, University of Torino, Turin, Italy (D.R.); and Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico (FPO-IRCCS), Candiolo, Turin, Italy (D.R.).