AIMC Topic: Contrast Media

Clear Filters Showing 1 to 10 of 546 articles

Radiomics analysis based on dynamic contrast-enhanced MRI for predicting early recurrence after hepatectomy in hepatocellular carcinoma patients.

Scientific reports
This study aimed to develop a machine learning model based on Magnetic Resonance Imaging (MRI) radiomics for predicting early recurrence after curative surgery in patients with hepatocellular carcinoma (HCC).A retrospective analysis was conducted on ...

Deep learning reconstruction for T2-weighted and contrast-enhanced T1-weighted magnetic resonance enterography imaging in patients with Crohn's disease: Assessment of image quality and clinical utility.

Clinical imaging
PURPOSE: To investigate the image quality of deep learning-reconstructed T2-weighted half-Fourier single-shot turbo spin echo (DL T2 HASTE) and contrast-enhanced T1-weighted volumetric interpolated breath-hold examination (DL T1 VIBE) of magnetic res...

Non-invasive prediction of DCE-MRI radiomics model on CCR5 in breast cancer based on a machine learning algorithm.

Cancer biomarkers : section A of Disease markers
BackgroundNon-invasive methods with universal prognostic guidance for detecting breast cancer (BC) survival biomarkers need to be further explored.ObjectiveThis study aimed to investigate C-C motif chemokine receptor type 5 (CCR5) prognosis value in ...

Improving lower-extremity artery depiction and diagnostic confidence using dual-energy technique and popliteal artery monitoring in dual-low dose CT angiography.

Scientific reports
To assess the utility of dual-energy CT scanning (DECTs) with popliteal artery (PA) monitoring in dual low-dose (radiation and contrast) lower-extremity CT angiography (LE-CTA). 135 patients undergoing LE-CTA were prospectively included and divided i...

Tumor grade-titude: XGBoost radiomics paves the way for RCC classification.

European journal of radiology
This study aimed to develop and evaluate a non-invasive XGBoost-based machine learning model using radiomic features extracted from pre-treatment CT images to differentiate grade 4 renal cell carcinoma (RCC) from lower-grade tumours. A total of 102 R...

Gadoxetic acid-enhanced MRI for identifying cholangiocyte phenotype hepatocellular carcinoma by interpretable machine learning: individual application of SHAP.

BMC cancer
PURPOSE: Cholangiocyte phenotype hepatocellular carcinoma (HCC) is highly invasive. This study aims to develop and validate an optimal machine learning model to predict cholangiocyte phenotype HCC based on T1 mapping gadoxetic acid-enhanced MRI and t...

Tissue Clutter Filtering Methods in Ultrasound Localization Microscopy Based on Complex-Valued Networks and Knowledge Distillation.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Ultrasound localization microscopy (ULM) is a blood flow imaging technique that utilizes micrometer-sized microbubbles (MBs) as contrast agents to achieve high-resolution microvessel reconstruction through precise localization and tracking of MBs. Th...

Waveform-Specific Performance of Deep Learning-Based Super-Resolution for Ultrasound Contrast Imaging.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Resolving arterial flows is essential for understanding cardiovascular pathologies, improving diagnosis, and monitoring patient condition. Ultrasound contrast imaging uses microbubbles to enhance the scattering of the blood pool, allowing for real-ti...

Enhancing Specificity in Predicting Axillary Lymph Node Metastasis in Breast Cancer through an Interpretable Machine Learning Model with CEM and Ultrasound Integration.

Technology in cancer research & treatment
IntroductionThe study aims to evaluate the performance of an interpretable machine learning model in predicting preoperative axillary lymph node metastasis using primary breast cancer and lymph node features derived from contrast-enhanced mammography...

A novel intelligent grade classification architecture for Patent Foramen Ovale by Contrast Transthoracic Echocardiography based on deep learning.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Patent foramen ovale (PFO) is one of the main causes of ischemic stroke. Due to the complex characteristics of contrast transthoracic echocardiography (cTTE), PFO classification is time-consuming and laborious in clinical practice. For this reason, a...