Development of AI-Based Diagnostic Algorithm for Nasal Bone Fracture Using Deep Learning.

Journal: The Journal of craniofacial surgery
PMID:

Abstract

Facial bone fractures are relatively common, with the nasal bone the most frequently fractured facial bone. Computed tomography is the gold standard for diagnosing such fractures. Most nasal bone fractures can be treated using a closed reduction. However, delayed diagnosis may cause nasal deformity or other complications that are difficult and expensive to treat. In this study, the authors developed an algorithm for diagnosing nasal fractures by learning computed tomography images of facial bones with artificial intelligence through deep learning. A significant concordance with human doctors' reading results of 100% sensitivity and 77% specificity was achieved. Herein, the authors report the results of a pilot study on the first stage of developing an algorithm for analyzing fractures in the facial bone.

Authors

  • Yeonjin Jeong
    Department of Plastic and Reconstructive Surgery, National Medical Center, Seoul, Korea.
  • Chanho Jeong
    Department of Plastic and Reconstructive Surgery, Kangwon National University Hospital, Kangwon-do, Korea.
  • Kun-Yong Sung
    Department of Plastic and Reconstructive Surgery, Kangwon National University Hospital, Kangwon-do, Korea.
  • Gwiseong Moon
    Department of Computer Science and Engineering, Kangwon National University, Kangwon-do, Korea.
  • Jinsoo Lim
    Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, St. Vincent's Hospital, Gyeonggi-do, Korea.