Convolutional Neural Networks for Radiologic Images: A Radiologist's Guide.

Journal: Radiology
Published Date:

Abstract

Deep learning has rapidly advanced in various fields within the past few years and has recently gained particular attention in the radiology community. This article provides an introduction to deep learning technology and presents the stages that are entailed in the design process of deep learning radiology research. In addition, the article details the results of a survey of the application of deep learning-specifically, the application of convolutional neural networks-to radiologic imaging that was focused on the following five major system organs: chest, breast, brain, musculoskeletal system, and abdomen and pelvis. The survey of the studies is followed by a discussion about current challenges and future trends and their potential implications for radiology. This article may be used as a guide for radiologists planning research in the field of radiologic image analysis using convolutional neural networks.

Authors

  • Shelly Soffer
    From the Department of Diagnostic Imaging, Sheba Medical Center, Emek HaEla St 1, Ramat Gan, Israel (S.S., M.M.A., E.K.); Faculty of Engineering, Department of Biomedical Engineering, Medical Image Processing Laboratory, Tel Aviv University, Tel Aviv, Israel (A.B., H.G.); and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (S.S., O.S.).
  • Avi Ben-Cohen
    From the Department of Diagnostic Imaging, Sheba Medical Center, Emek HaEla St 1, Ramat Gan, Israel (S.S., M.M.A., E.K.); Faculty of Engineering, Department of Biomedical Engineering, Medical Image Processing Laboratory, Tel Aviv University, Tel Aviv, Israel (A.B., H.G.); and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (S.S., O.S.).
  • Orit Shimon
    From the Department of Diagnostic Imaging, Sheba Medical Center, Emek HaEla St 1, Ramat Gan, Israel (S.S., M.M.A., E.K.); Faculty of Engineering, Department of Biomedical Engineering, Medical Image Processing Laboratory, Tel Aviv University, Tel Aviv, Israel (A.B., H.G.); and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (S.S., O.S.).
  • Michal Marianne Amitai
    From the Department of Diagnostic Imaging, Sheba Medical Center, Emek HaEla St 1, Ramat Gan, Israel (S.S., M.M.A., E.K.); Faculty of Engineering, Department of Biomedical Engineering, Medical Image Processing Laboratory, Tel Aviv University, Tel Aviv, Israel (A.B., H.G.); and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (S.S., O.S.).
  • Hayit Greenspan
  • Eyal Klang
    Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY, USA.