iEnhancer-5Step: Identifying enhancers using hidden information of DNA sequences via Chou's 5-step rule and word embedding.

Journal: Analytical biochemistry
Published Date:

Abstract

An enhancer is a short (50-1500bp) region of DNA that plays an important role in gene expression and the production of RNA and proteins. Genetic variation in enhancers has been linked to many human diseases, such as cancer, disorder or inflammatory bowel disease. Due to the importance of enhancers in genomics, the classification of enhancers has become a popular area of research in computational biology. Despite the few computational tools employed to address this problem, their resulting performance still requires improvements. In this study, we treat enhancers by the word embeddings, including sub-word information of its biological words, which then serve as features to be fed into a support vector machine algorithm to classify them. We present iEnhancer-5Step, a web server containing two-layer classifiers to identify enhancers and their strength. We are able to attain an independent test accuracy of 79% and 63.5% in the two layers, respectively. Compared to current predictors on the same dataset, our proposed method is able to yield superior performance as compared to the other methods. Moreover, this study provides a basis for further research that can enrich the field of applying natural language processing techniques in biological sequences. iEnhancer-5Step is freely accessible via http://biologydeep.com/fastenc/.

Authors

  • Nguyen Quoc Khanh Le
    In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan. Electronic address: khanhlee@tmu.edu.tw.
  • Edward Kien Yee Yapp
    Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, #08-04, Innovis, 138634, Singapore.
  • Quang-Thai Ho
    Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan. Electronic address: hoquangthaiholy@gmail.com.
  • N Nagasundaram
    Medical Humanities Research Cluster, School of Humanities, Nanyang Technological University, 48 Nanyang Ave, 639798, Singapore.
  • Yu-Yen Ou
    Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan. Electronic address: yien@saturn.yzu.edu.tw.
  • Hui-Yuan Yeh
    School of Humanities, Nanyang Technological University, 14 Nanyang Dr, Singapore 637332.