Shape-Based Generative Modeling for de Novo Drug Design.

Journal: Journal of chemical information and modeling
Published Date:

Abstract

In this work, we propose a machine learning approach to generate novel molecules starting from a seed compound, its three-dimensional (3D) shape, and its pharmacophoric features. The pipeline draws inspiration from generative models used in image analysis and represents a first example of the de novo design of lead-like molecules guided by shape-based features. A variational autoencoder is used to perturb the 3D representation of a compound, followed by a system of convolutional and recurrent neural networks that generate a sequence of SMILES tokens. The generative design of novel scaffolds and functional groups can cover unexplored regions of chemical space that still possess lead-like properties.

Authors

  • Miha Škalič
    Computational Biophysics Laboratory, Universitat Pompeu Fabra , Parc de Recerca Biomèdica de Barcelona, Carrer del Dr. Aiguader 88, Barcelona 08003, Spain.
  • José Jiménez
    Computational Biophysics Laboratory, Universitat Pompeu Fabra , Parc de Recerca Biomèdica de Barcelona, Carrer del Dr. Aiguader 88, Barcelona 08003, Spain.
  • Davide Sabbadin
    Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova , via Marzolo 5, Padova, Italy.
  • Gianni De Fabritiis
    Computational Science Laboratory , Parc de Recerca Biomèdica de Barcelona , Universitat Pompeu Fabra , C Dr Aiguader 88 , Barcelona , 08003 , Spain . Email: gianni.defabritiis@upf.edu.