Predicting forced vital capacity (FVC) using support vector regression (SVR).
Journal:
Physiological measurement
PMID:
30699391
Abstract
OBJECTIVE: Spirometry, as the gold standard approach in the diagnosis of chronic obstructive pulmonary disease (COPD), has strict end of test (EOT) criteria (e.g. complete exhalation), which cannot be met by patients with compromised health states. Thus, significant parameters measured by spirometry, such as forced vital capacity (FVC), have limited accuracies. To address this issue, the present study aimed to develop models based on support vector regression (SVR) to predict values of FVC under the condition that the EOT criteria were not fully met.